
2024 Annual Sustainability Report

Harvard Medical School & Harvard School of Dental Medicine

Campus Planning & Facilities

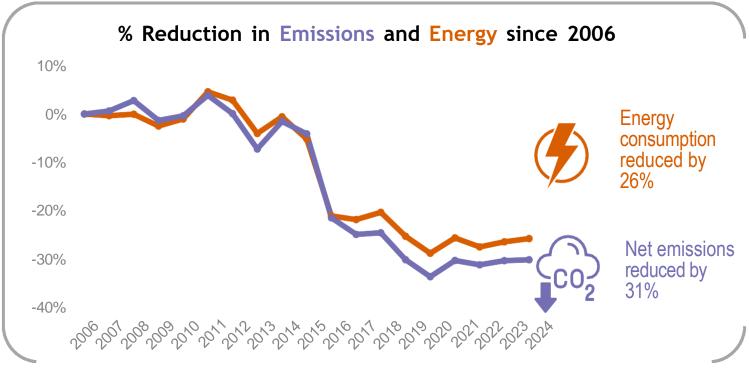
Contents

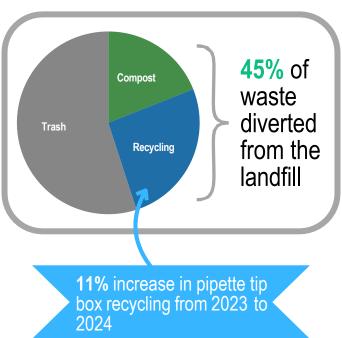
At a glance	3
Emissions	5
Getting to Goal Zero	6
Building Statistics	7
Energy	8
Green Labs	15
Campus Systems	17
Community Engagement	21
Dining	23
Contact	24

Reflecting on 2024¹

As stewards of the campus, we are responsible for its care and operations and for advancing environmental stewardship as a core part of that work.

Over the past years, Campus Planning & Facilities implemented new energy efficiency measures, expanded our waste reduction initiatives, and supported projects to reduce the environmental impact of research operations.


Aligned with Harvard's Sustainability Action Plan, we remain focused on emissions reduction and resource conservation, in support of the University's broader climate goals. The success of this work also depends on community participation, and we are grateful to the many staff, faculty, and students whose daily actions help move it forward.


We invite you to explore this year's report and join us in building a more sustainable, resilient campus.

Stephen Maiorisi Chief Campus Planning and Facilities Officer Harvard Medical School

¹ The completion of School's sustainability report depends on the availability of previous year's carbon emission and energy saving numbers which could delay publishing the report by six months or longer

2024 sustainability impact at a glance

energy projects completed
104 corrected mechanical faults
3,200 light fixtures upgraded
metric tons CO₂e

1,880 metric tons CO₂e avoided annually

Equivalent to:

2,110,548 pounds of coal burned

213,795 gallons of gasoline used

31,417 tree seedlings grown for 10 years

255 homes' energy use for one year

Cut road salt use per inch by ~60% vs. baseline, even with heavy snowfall

875 meals donated by Restaurant Associates

13% less water used across campus in 2024

135 MWh produced with solar on campus

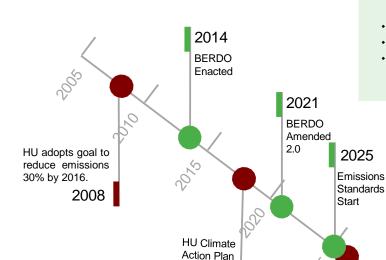
Emissions & Climate Commitments

Harvard Medical School (HMS) and Harvard School of Dental Medicine (HSDM) are working to reduce greenhouse gas emissions in line with both University commitments and City of Boston requirements. Our approach combines long-term decarbonization of campus energy systems, operational improvements, and transparent reporting to track progress.

Building Emissions Reduction and Disclosure Ordinance (BERDO)

The City of Boston's BERDO applies to large buildings across the city, including those at HMS and HSDM.

- Annual reporting of building energy use and emissions
- Emissions standards take effect in 2025


2035

Standards tighten

2030

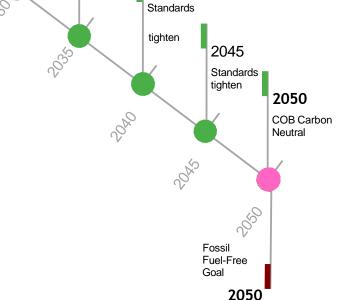
50% Emissions Reduction

- Standards tighten every five years through 2050
- Supports Boston's goal of 50% emissions reduction by 2030 and carbon neutrality by 2050

2018

Fossil

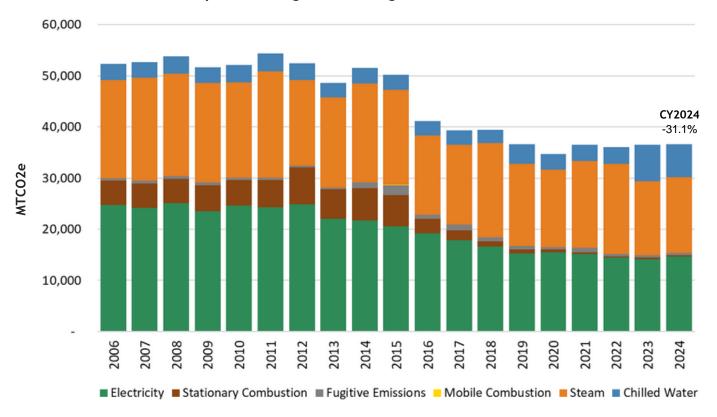
Goal


Fuel-Neutral

2026

Harvard Commitments

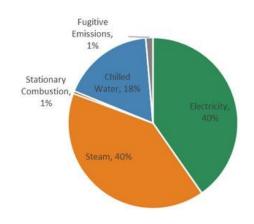
These commitments are outlined in the Harvard Sustainability Action Plan, which also sets the vision for investments in renewable energy, sustainable construction, and resilience across Harvard.


- Fossil fuel-neutral by 2026
- · Fossil fuel-free by 2050 ("Goal Zero")

2040

Emissions Update

HMS and HSDM Total Scope 1 and 2 greenhouse gas emissions



In 2024, HMS and HSDM's Scope 1 and 2 emissions remained steady compared to 2023 (+0.2%), maintaining a 31.1% reduction from the 2006 baseline. HSDM represents about 6% of the overall campus total.

Helpful definitions:

- Greenhouse gas emissions (GHGs): gases that trap heat in the Earth's atmosphere, intensifying the greenhouse effect and causing global warming.
- MTCO₂e: metric tons of carbon dioxide equivalent.
 Equivalent carbon dioxide is a metric that accounts for various greenhouse gases' respective capacities to heat the Earth's atmosphere.
- Fugitive Emissions: Pollutant released into air from leaks in equipment, pipelines, seals, valves, etc., like those that contain refrigerants.

Stationary Combustion: A fixed-site producer of GHGs. At HMS/HSDM, these emissions are mainly from a few smaller facilities that still use natural gas boilers for heat.

*Note: 2024 data is preliminary and may undergo revisions as finalized figures become available.

Utility Master Planning & Goal Zero

In 2024, HMS completed its four-phase Utility Master Plan (UMP) to evaluate the campus's core energy and utility systems, which had been underway since 2022. The UMP assessed current infrastructure performance, future cooling and capacity needs, and long-term resilience under various scenarios. At the same time, it modeled pathways for reducing fossil fuel use through electrification, heat recovery, and low-temperature hot water conversion.

These analyses can support capital planning, system reliability improvements, and the path to Harvard's Goal Zero commitment to eliminate fossil fuels by 2050. Building on the UMP and its results, HMS is now developing an internal decarbonization roadmap to evaluate feasible emissions-reduction pathways and support institutional decision-making.

Infrastructure Analysis

Mar 2022 - Aug 2022

- Existing conditions review
- Infrastructure assessments
- Energy modeling & load forecasting
- Chilled water pressure analysis

System Conversion Planning

Oct 2022 - Mar 2023

- Low-temp hot water feasibility
- Steam to hot water conversion
- GHG emissions reduction analysis
- Phased implementation strategy

Cooling Enhancement

Apr 2023 - Aug 2023

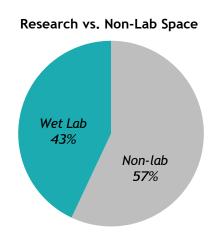
- Address summer CHW capacity shortage
- Analyze capacity expansion
- Rooftop chiller upgrades
- North and South Campus interconnection

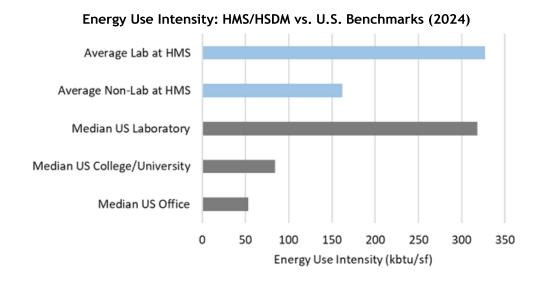
Alternative Technologies

Sep 2023 - Apr 2024

- Additional electrification technologies
- Capital and operating cost analysis
- Emerging decarbonization tech

2025/2026 Focus: HMS/HSDM Decarbonization Roadmap


Facilities is compiling the results of all phases of UMP analysis into an actionable decarbonization roadmap for the schools.


High-Impact Research Spaces

Laboratories and research buildings are the most energy-intensive spaces on campus. They operate continuously, require high ventilation rates for safety, and house dense equipment with strict temperature and humidity requirements. While actual wet lab space makes up less than half of gross HMS/HSDM square footage, it accounts for the majority of energy use — and the largest share of our carbon footprint.

Because labs are complex, costly to modify, and central to research quality, they represent both the most challenging and the most impactful opportunities for emissions reduction.

In 2024, Facilities advanced several lab-focused strategies, from optimizing air handling to incentivizing efficient equipment purchases. The following Energy section highlights specific projects which mainly target these high-consumption areas. These kinds of efficiency projects are critical steps laying the groundwork for longer-term carbon reductions in our most demanding research spaces. The goal is to maximize efficiency and reduce energy waste before shifting to new technologies or electrification, ensuring systems are properly sized for future needs.

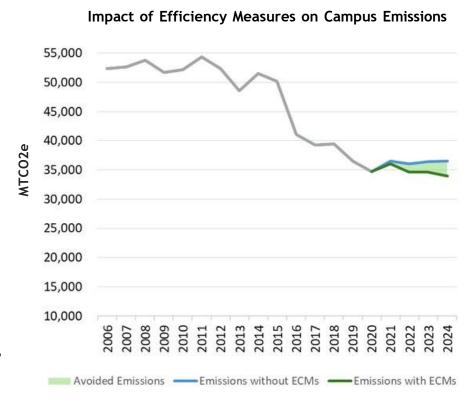
In 2024, HMS/HSDM laboratories used slightly more energy per square foot than the U.S. laboratory median. Nonlab buildings on campus also used more energy than typical U.S. colleges, universities, and offices, reflecting the additional demands of supporting a research campus even outside laboratory spaces.

Energy

Managing energy use on a large research campus requires both near-term action and long-range planning. Each year, Campus Planning & Facilities implements projects that improve efficiency, cut emissions, and strengthen utility systems.

The following section highlights key energy projects completed in 2024, along with the measurable impacts they delivered. These efforts targeted our most energy-intensive spaces while also delivering benefits across the broader campus. Together, these efforts advance Harvard's climate commitments while preparing campus systems for the transition away from fossil fuels.

Measuring the Impact of Efficiency Projects


Weather-normalized analysis shows how operational and equipment changes at HMS and HSDM have reduced energy use and emissions, independent of weather fluctuations.

From 2021 to 2024, efficiency measures reduced campus emissions by ~7% (about 2,600 MTCO₂e), equivalent to removing 570 cars from the road for a year.

These savings were generated by improvements across all utilities:

- · Electricity: 9.6% below baseline
- Steam: 6.6% below baseline (largest carbon impact)
- Chilled Water: 5.3% below baseline.

Annual savings build on one another, lowering costs, reducing emissions, and preparing the campus for the eventual transition away from fossil fuels.

Heat Recovery

Research buildings use 100% outside air for ventilation and for safety, which means large volumes of air must be constantly cooled, heated, and dehumidified throughout the year. Conditioning this air requires significant cooling and heating energy, and the heat generated by mechanical equipment and environmental rooms adds to the additional cooling load. Commonly, the heat removed through these processes is simply discharged outdoors through exhaust air or cooling towers.

Heat recovery systems capture a portion of this thermal energy and put it to use. Instead of allowing it to escape, the systems redirect the heat to meet the building's internal heating needs. This reduces demand for steam and hot water, lowers energy use, and cuts greenhouse gas emissions. At HMS, heat recovery has become a core strategy for decarbonizing research facilities with intensive energy demands.

Heat Recovery at the Veritas Science Center (formerly NRB)

In 2024, HMS brought a new heat recovery chiller online at the Veritas Science Center, the School's largest and one of its most research-intensive facilities. The system captures heat that would otherwise be rejected through cooling towers and redirects it to the building's reheat loops, reducing reliance on steam and hot water. It also meets a steady cooling load from fan coil units, allowing the chiller to operate efficiently year- round.

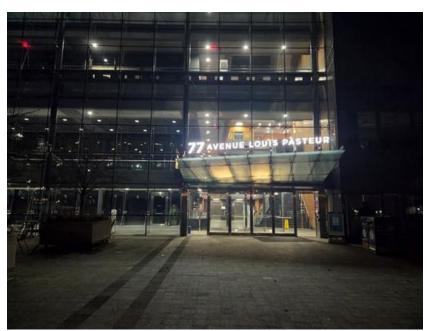
Performance measurement and verification are ongoing, but the project is expected to reduce annual carbon emissions by more than 1,200 metric tons, making it the largest single-project emissions reduction completed at HMS to date.

This work builds on a prior heat recovery upgrade to the VSC's process cooling system. which was completed in 2023. More information on that project is available year's in last sustainability report.

Coil Cleaning in VSC and Mudd

In 2024, HMS completed deep cleaning of heat recovery coils in major air handling units at the Veritas Science Center and the Seeley G. Mudd building. Clogged coils restrict airflow and reduce heat transfer, forcing systems to work harder and use more energy. Cleaning restored performance and is projected to save ~109,000 kWh of electricity and 2,450 MMBtu of steam annually - about 205 MTCO2e.

Dirty coils before cleaning.



After cleaning, grooves and fins are visible.

Lighting Upgrades

Facilities replaced another 3,197 lighting fixtures across campus in 2024, including in buildings, mechanical areas, and exterior spaces. These upgrades complete the campus-wide LED upgrade program that the schools started in 2022, and are expected to save an additional 436,000 kWh annually, about 110 MTCO2e. LEDs use far less electricity (up to 80% less) and last longer, cutting both energy costs and replacement waste.

Location	# of Fixtures	Electric Savings (kWh)
180 Longwood	535	87,000
Countway Library	1,940	261,000
Exterior	283	30,000
Gordon Hall	329	41,000
Mechanical Spaces	110	17,000
Total	3,197	436,000

New LEDs in the VSC at night.

Fixtures in 180 Longwood before.

After the upgrade.

Compressed Air Leak Detection Audit

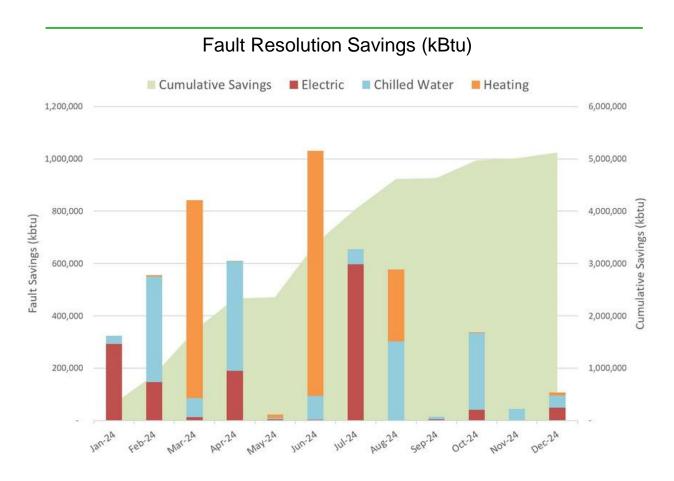
Compressed air powers instrumentation, controls, and laboratory equipment across HMS, but it is costly to produce and distribute. Even small leaks waste energy by increasing compressor run times.

In 2024, a campus-wide audit identified 25 leaks totaling about 7.8 cubic feet per minute (CFM) of continuous air loss. Repairs are underway, reducing wasted electricity and lowering wear on equipment.

Facilities completes this survey once every two years. Since 2017, the program has identified and repaired nearly 200 CFM of leakage, avoiding about \$75,000 in costs.

Capital Metering Infrastructure Project

Accurate metering is a key element of both operational efficiency and sustainability reporting of buildings. Without reliable data, it is difficult to verify project savings, identify inefficiencies, or other tasks like allocating energy costs fairly and accurately. In 2024, HMS launched the Capital Metering Infrastructure Project, a multi-year effort to replace nearly 100 utility meters across campus. The first phase, completed in September 2024, focused on steam metering, with 14 new meters commissioned.


These meters feed into HMS/HSDM's central data collection system, improving visibility into how utilities are being used. With better data, Facilities can pinpoint performance issues faster, confirm the real-world impact of energy conservation projects, improve accuracy of internal analyses and utility allocations, and strengthen the accuracy of greenhouse gas inventories.

The installations require a significant amount of coordination as many meters are located in tight mechanical spaces, and installations often require shutdowns of utilities that must be scheduled to avoid disrupting sensitive research operations. Some projects also require significant mechanical work to accommodate new equipment, such as pipe modifications. Phase I of the project was completed successfully, and the next phases in 2025 and 2026 will complete steam meter replacements and then expand coverage to chilled water, electricity, and city water.

Fault Detection Software

HMS and HSDM operate an ongoing fault detection and analytics program that monitors the campus building control system and flags issues early. The system reviews temperatures, airflows, and schedules to identify hidden inefficiencies such as simultaneous heating and cooling, sensor drift, or control errors. In 2024, alerts prompted the correction of over 100 issues, resulting in an estimated ~5.1 million kBtu in realized savings (equal to about 1% of total campus carbon emissions). HMS/HSDM choose to report savings credited only for the period an issue was present and end on the documented fix date, which keeps results aligned with actual performance.

The software also models potential energy losses if issues were left uncorrected. Across the 2024 findings that potential was approximately 16.4 million kBtu. This report credits savings only for the period a fault was active, keeping results aligned with actual performance.

Tracking Project Savings

In 2023, Facilities began using GRITS (Green Revolving Investment Tracking System) a new project tracking system to monitor, analyze and track Energy Conservation Measures (ECMs) completed on the HMS & HSDM campus. This system also allows Facilities to view projects completed by other institutions and learn from peer campuses.

This provides the Schools with a standardized platform for tracking and sharing the energy and cost performance of projects. Many historical projects have also been back-entered, creating a useful record that allows HMS and HSDM to monitor our progress over time.

For a running summary of projects and their savings, please visit the sustainability website.

Coming in 2025:

- Biannual preventative maintenance will take place on ULT freezers, supporting lab equipment efficiency and reliability.
- A new package of energy conservation projects (Phase 4) will be carried out in several buildings, focusing on Retro-Commissioning (RCx), optimized scheduling, enhanced controls and ventilation optimization.
- Mechanical efficiency upgrades will be completed in the Dental Research and Education Building.
- Design and planning will begin for the next phase of energy conservation program (Phase 5) which will include expanded heat recovery projects, CO₂ based Demand-Control ventilation, and others.

Green Labs

Engaging and working directly with researchers is essential to reducing HMS's footprint. In 2024, several programs supported more sustainable lab practices, from certifying labs that adopt best practices, to incentivizing efficient equipment purchases, to recycling specialized materials that would otherwise go to waste. Together, these initiatives advance Harvard's climate commitments while demonstrating that research excellence and sustainability can go hand in hand.

Green Lab Certification

The Green Lab Certification program encourages laboratories to adopt best practices that reduce energy use, minimize waste, and promote safer, more sustainable research spaces. The program provides a structured framework that helps researchers and lab managers identify practical steps they can take, from managing fume hood use and cold storage, to purchasing more efficient equipment and improving recycling practices.

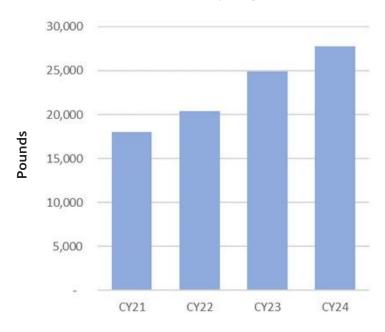
Over the past several years, HMS labs have participated in certification at multiple levels, demonstrating how sustainable practices can be integrated into high-intensity research environments. The program continues to help labs gain recognition for sustainable practices while advancing Harvard's climate commitments. In 2025, HMS will review opportunities to better align certification with evolving lab needs and institutional priorities.

Ultra-Low Temperature Freezer Rebate Program

Ultra-low temperature (ULT) freezers are among the most energy-intensive pieces of equipment in research laboratories, often running 24/7 at temperatures as low as -80°C. To encourage the purchase of more efficient models, HMS offers rebates to labs that replace or upgrade their freezers with high-efficiency units.

In 2024, several labs participated in the program, replacing older units with high-performance models that use about half the energy. Each replacement is expected to save thousands of kilowatt-hours annually, reducing both operating costs and greenhouse gas emissions. The 2024 replacements alone are projected to save about 120,000 kWh per year — roughly 30 metric tons of CO₂e. Beyond efficiency, the upgraded freezers provide greater reliability, reducing the risk of unexpected failures that can disrupt research and protecting labs against costly downtime and potential sample loss.

Beyond direct savings, the rebate program also raises awareness about the hidden costs of laboratory equipment and highlights the role purchasing decisions play in sustainability. HMS continues to explore opportunities to expand the program to cover additional categories of high-impact lab equipment, further multiplying its benefits.


Pipette Tip Box Recycling

Pipette tip boxes are one of the most common plastics in research labs but cannot be recycled through local waste streams. To address this, HMS collects empty boxes for recycling at a specialized facility, where they are cleaned and reprocessed into new plastic products.

In 2024, HMS labs diverted nearly 28,000 pounds of tip boxes — more than 13 tons kept out of landfills and an 11% increase over 2023. Collection stations are now available in dozens of locations across all research buildings, making participation straightforward for lab staff.

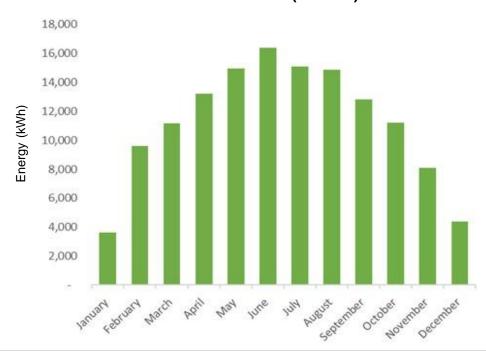
The program continues to expand: in late 2024 the Harvard School of Dental Medicine also began collecting pipette tip boxes in the Dental Research and Education Building, and their contributions will be reflected in next year's totals.

Annual Recycling Volumes

Campus Systems

Facilities also tracks performance of other systems and resources at the campus scale, like water, waste, and grounds. The following pages provide data and updates from 2024, highlighting where resource use is changing over time and how operational practices continue to evolve.

VSC Solar Array


Below is the monthly production of electricity from the 380 solar panels on the roof of VSC in 2024. This electricity supplements power provided by Eversource. Every kWh generated by the solar panels contributes to the relative reduction of GHG emissions that would otherwise be generated by Eversource.

Production Stats 2024:

- ~135 MWh generated
- ~35 MT CO₂e emissions avoided

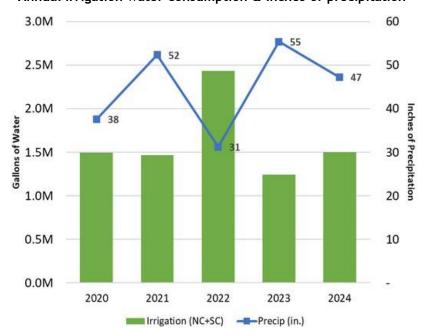
VSC Solar Production (CY2024)

Water Consumption

Water use on campus supports regular building uses (sinks, toilets, water fountains), laboratory processes such as sterilization and cagewash, cooling towers in select facilities, as well as some irrigation. HSDM represents about 3% of the overall total presented here. In 2024, total consumption on campus declined by 13% compared to 2023.

One of the most significant reductions came from the Veritas Science Center, where the replacement of water-cooled vacuum pumps on sterilizers lowered building water use by an estimated 17% from 2023.

These savings offset higher demand from cooling towers during a hotter-than-average summer, when Cooling Degree Days rose 8% over 2023. Irrigation also increased slightly due to reduced rainfall, though it continues to represent only a small share of campus demand.

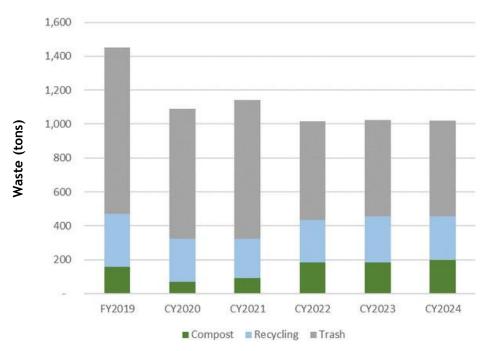

Together, these factors produced a net decline in campus water use, highlighting the impact targeted upgrades in research facilities can have on overall consumption.

HMS/HSDM Total Water Consumption (gallons) 80.0M 70.0M 60.0M 50.0M 40.0M 30.0M 20.0M 10.0M 0.0M 2019 2020 2024 2021 2022 2023

What is a Cooling Degree Day?

Cooling Degree Days (CDDs) are a measure of how hot the weather is and how much energy buildings are likely to use for cooling. The higher the number of CDDs in a year, the greater the demand on cooling systems such as chillers and cooling towers.

Annual Irrigation water consumption & inches of precipitation



Waste Disposal

In 2024, HMS maintained relatively steady overall waste generation compared to the prior year, with a slight decrease in total reported tonnage. Compost volumes reached a record high, reflecting continued growth in participation in organics diversion programs. Municipal Solid Waste (trash) decreased for the second consecutive year, continuing a long-term downward trend. Recycling volumes dipped slightly but remain above 2022 levels.

These trends reflect changes in building use patterns along with improvements in waste diversion infrastructure and practices. A major step forward in 2024 was the launch of a signage update program across campus. Outdated signs were replaced and bins were relabeled to improve clarity and reduce contamination. Building on this work, HMS plans to expand signage updates into research laboratories in 2025, with a focus on recycling bins where clear guidance is especially important.

HMS Waste Volumes

Note: Some compost, trash, and recycling data are estimated based on pickup frequency and bin volume, not weight. Actual waste tonnage may vary for waste that is not compacted.

Biological waste, **AKA** "red bag waste" is managed separately from other campus streams to ensure safety and regulatory compliance. Unlike other materials, biowaste cannot be diverted through recycling or composting, and volumes generally reflect the level of research activity on campus.

In 2024, HMS disposed of nearly 300,000 pounds of biowaste, consistent with previous years' disposal rates. Campus Planning and Facilities will work with EH&S, labs, and departments to improve communication on proper biowaste disposal. In some cases, items end up in red bag bins not because they require it, but simply because the bin is closest to the bench. Clearer reminders about what does/doesn't belong in biowaste bins and more intentional placement of bins will help staff and researchers make informed choices without compromising safety.

Grounds

HMS and HSDM's outdoor spaces are maintained year-round with an emphasis on safety, appearance, and environmental stewardship. Crews care for plantings, trees, and site infrastructure in every season, while winter brings the added challenge of keeping walkways and entries clear of snow and ice.

Shifting practices

Traditional methods for snow removal rely on heavy applications of chloride, along with snow-melting machines. Those methods can keep surfaces clear but can cause long-term damage to pavement and landscaping, consume significant amounts of fuel, and frequently send excess chlorides into storm drains, which can contaminate waterways.

In 2023, Facilities introduced a prevention-based strategy to reduce these impacts. Brine pretreatment — a liquid mix of water and salt, sometimes blended with vegetable byproducts — is applied before storms so ice cannot bond to pavement. Brush-equipped plows clear snow mechanically, reducing chemical use. Magnesium chloride is reserved for designated "non-chloride" zones where rock salt would be too harsh, and spreaders are calibrated to prevent overapplication. This approach prioritizes safety while applying chemicals responsibly and consistently with established amounts per inch or hour of snowfall.

Results

- Historical baseline: ~9,000 lbs of salt per inch of snow
- 2023/24 season (first year with new practices): ~2,550 lbs per inch, more than 70% less than baseline.
- 2024/25 season (continuing the new approach): ~3,500 lbs per inch (60% reduction), despite nearly triple the snowfall (30 inches of snow).

Beyond winter

Grounds sustainability extends year-round. Fertilizers are applied only when soil testing indicates a need, drains are covered during applications to prevent runoff, and only OMRI-listed products are used. A pilot of native plantings is being considered to reduce irrigation and fertilizer needs while supporting biodiversity. Looking ahead, Facilities is also preparing to introduce an electric mower in 2025 as part of the transition away from gas-powered equipment.

Ventrac with brine sprayer

Despite receiving nearly 30 inches of snow this winter, HMS's new method has reduced road salt by about 75%, from our baseline

Events

In 2024, HMS organized and participated in several events that created opportunities for the community to learn about sustainability and connect with and participate in ongoing initiatives.

Earth Day Festival

The annual Longwood Earth Day Festival, held at Countway Garden, drew an estimated 400 attendees and featured tables from numerous community and sustainability partners. Co-sponsored by Countway Library, the Harvard T.H. Chan School of Public Health, HMS, and HSDM, the event highlighted a wide range of campus initiatives including sustainability waste, health, food, wellness, and more.

Sustainable September

As part of a "Sustainable September," series, HMS hosted several events including a lunch-and-learn session on Green Labs strategies for reducing energy and resource use, and a tour of Save That Stuff, the vendor that processes Harvard's organics ("compost"). HMS also joined the Parking Office's Bike Fair in September, supporting sustainable commuting options and providing resources for the community.

How Campus Organics Become Energy

Organics collected from HMS are processed at Save That Stuff's Charlestown facility using WM's patented CORe® system. The system separates contaminants, grinds food scraps into a slurry, and sends it to the Greater Lawrence Sanitary District. There, the slurry undergoes anaerobic digestion, producing renewable biogas that powers the wastewater treatment plant. Learn more about this process here.

Countway Garden

Countway Library and the Countway Community Garden provide students, staff, and faculty with a welcoming outdoor space for gardening, events, and community connection. Managed in partnership with campus volunteers, the garden supports dozens of raised beds planted each spring and maintained through the growing season, and also serves as a venue for workshops, social gatherings, and wellness programming.

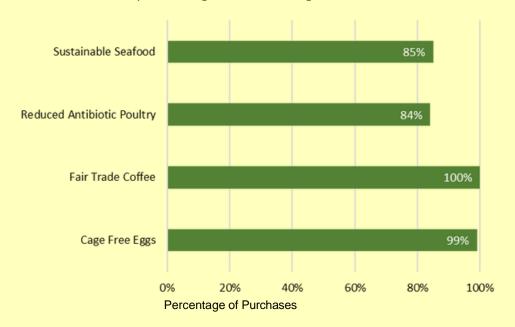
For more than a decade, the Garden has brought people together to grow food, share knowledge, and enjoy a green oasis on the Longwood campus.

- During the 2024 growing season (April–October), the Garden had
 152 registered gardeners planting in 55 raised beds.
- The garden hosted over 40 events organized by departments from across campus.
- The garden co-hosted the first annual Earth Day Festival, which brought in over 350 attendees and featured 11 campus groups.
- Countway also launched the Sustainability Bookshelf, a browsable online list of 40 titles on a range of sustainability topics, created in collaboration with Harvard's Council of Student Sustainability Leaders.

Countway Library also maintains a

Seed Library, where community members can borrow seeds to grow at home. After the harvest, members are encouraged to save the seeds and donate them back to the library for others to enjoy

Connect directly with the Countway Garden and Countway Library here: https://countway.harvard.edu/events/community -garden


Dining

HMS partners with Restaurant Associates (RA), a member of the Compass Group, USA, as its on-site dining management company. RA implements sustainable practices and promotes healthy food choices through various initiatives, including:

- Sourcing sustainable seafood according to Monterey Bay Aquarium Seafood Watch standards¹
- Maintaining a sustainability scorecard to track and monitor purchases
- Using compostable service ware, including BPI-certified plates, utensils, cups, and containers, across all dining areas
- Offering Virtual Teaching Kitchen classes that focus on sustainable, plant-forward meals to promote food literacy and education

Sustainable Sourcing

With a target of 100% sustainable purchasing across all categories of food, in 2024 RA achieved:

When falling short of the 100% goal, it is often due to supplier substitutions. RA continues to work closely with suppliers to minimize these occurrences and maintain high standards.

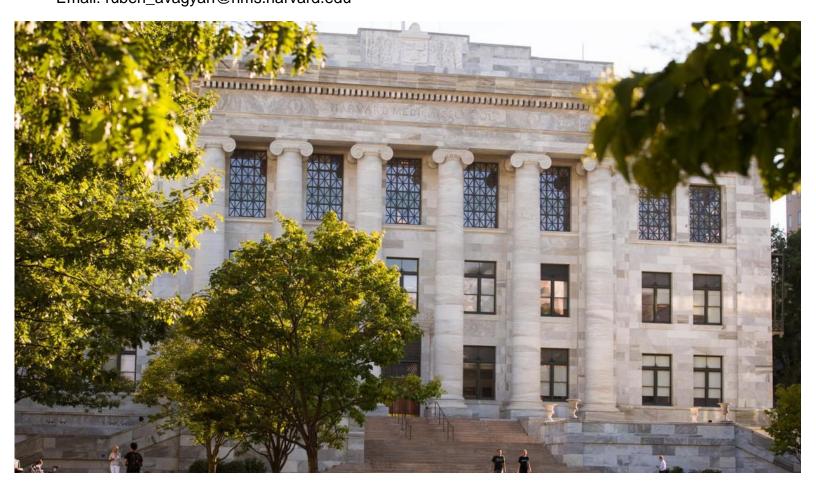
Food Recovery

RA partnered with Food For Free in Cambridge for food recovery in their Heat n Eats program. In **2024, RA contributed 875 meals**. This initiative helps reduce food waste while supporting the local community.

¹https://www.seafoodwatch.org/

Get in Touch

This report has been prepared by HMS Facilities' energy management and sustainability team with significant contributions from other stakeholders including facilities and grounds, custodial, auxiliary services, parking office, Community Gardens, Restaurant Associates and others.


Colette Baker, HMS Sustainability Manager and the main contributor to this report, has left the organization in September of 2025. Colette has been a valued member of Facilities team, known for her expertise, responsiveness, strong work ethic, and unwavering dedication for promoting conservation and sustainability on campus. As a department that supports the campus by providing reliable and effective maintenance and operations, we are deeply grateful for Colette's contributions.

For more information about sustainability initiatives and how you can get involved, please visit our website.

https://campusplanning.hms.harvard.edu/energy-sustainability

With all questions related to energy efficiency programs please contact:

Ruben Avagyan Associate Director of Energy and Utilities Email: ruben avagyan@hms.harvard.edu

